

## **Network Modeling and Simulation**



ITO/DARPA

John Martin (BFM)

Jennifer Mekis (BFM)

Sri Kumar (PM)

**April 2-4 PI Meeting** 

San Diego

**Supercomputer Center** 



## **Network Modeling and Simulation**



#### Goal:

Create Network Modeling and Simulation Tools that are trustworthy to provide a basis for on-line prediction and network control





## **New Capabilities**



#### Prediction

- End-End, Internal Behavior
- Anomaly, Faults
- Multi-scale (time, size), Multi-Resolution

#### Control

- Parameter tuning
- Dynamic deployment of protocols
- Rapid provisioning: BW, QoS

Human in the Loop. Reduce/eliminate



## Four Fold Path for Next Year



#### Build on this year's work

- Wholesome: Better linkage in PI work/ Integrated efforts
- Think: Measurement ←→ Modelers
  - Have we done enough?
  - What next?
- Defense: Engage to DoD problems; establish links to clients
- Experiment: Define, execute integrated experiments/demos
  - QoS, Failure Prediction
  - Multi-scale characterization/visualization of network performance
  - Engage DOD agencies in joint experimentation
  - Engage Multi-ISPs in experiments?

#### **Tuesday PM Breakout Sessions**



## **Agenda Monday**



- 0830 0900 DARPA
- 0900 1200 Review: New Models

(20 minutes each + Break)

- UC Berkeley/CISCO
- UIUC
- Caltech/ISI/Maya
- Rice
- Renesys/ATT/Princeton
- U Mass
- U MD
- 1200 -1330 Lunch
- 1330 1520 Review: Measurement/Simulation/Emulation (20 minutes each)
  - Renesys
  - Georgia Tech
  - Maya
  - CAIDA
  - CNRI/ATT/Intel/SLAC
  - UC Riverside
- 1600 1800 Infomercials and Demo/Poster Session







- 0745 0830 Charlie Plott, Caltech
- 0830 0915 Review: New Models
  - UC Irvine
  - Purdue
  - U Missouri/Rutgers/Georgia Tech
- 0915 1015 **Review: Simulation** 
  - SAMAN/ISI
  - RPI
  - SAIC
- 1015 1030 Break
- 1030 1200 DOD Panel. Organizer Al Legaspie, SPAWAR (Presentations and Q&A)
  - Navy- Captain Joseph Celano Head, SPAWAR Modeling and Simulation
  - Air Force: Major Rusty Baldwin: Air Force Institute of Technology
  - Army Major Dave Williams
- Luncheon Speaker:: CDR James Soriano, Tactical Flag Command Center, CENTCOM



## **Breakout Sessions: Tuesday PM**



#### Session 1: QoS and Overlay Networks

- Session leaders: Shiv Kalyanaraman (RPI) and Jean Walrand (UCB)
- Discussion leaders: Srikant (UIUC), Ogilenski (Renesys)

## • Session 2: Measurement: What it is and what it ought to be

- Session Leader: K Claffy (CAIDA)
- Discussion Leaders: Hajek (UIUC),
   Willinger (ATT), Towsley (UMass),
   Reidi (Rice), Jaffe (Cisco), others:
   TBD
- Model Validation
- On-line network control

#### Session 3: Integrated Experimentation/Demonstration (Late FY01, FY02)

- Session Leader: Fujimoto (Georgia Tech)
- Discussion Leaders: Bagrodia,
- Multi-operator network test beds
- DOD Network test beds

# • Session 4: Architecture and Integration

- Session Leaders: Gary Warren (SAIC), Heideman (ISI)
- Discussion Leaders: Baras (UMD), Others: TBD
- HLA, APIs, Interoperability to support Exp/demos

#### Session 5: Program Links to DOD applications

- Session Leader: Al Legaspie
- Discussion Leaders: TBD

#### • Session 6: Open (TBD on site)

- Possibilities: Early discussion of game theory
- More on Measurements







- 0800 1100 Report from breakout sessions
   Each session 20 minutes (0800 1000)
- Plenary and Planning one hour (1000 1100)
- Wrap up/Vote of thanks (1100 1105)
- 1105 Adjourn

- Game Theory based IT 1 3: 30 in Hotel



## News



## Entering Performers

- K. C. Claffy (CAIDA)
- C. Plott (Caltech)
- Mortazavian (UCLA)
- J. Hou (Ohio State)

#### Exit

None



## **Admin Notes - 1**



- Thanks to UCSD, Supercomputer Center
  - Facility
  - Refreshments for demo/poster session
  - KC Klaffy, Theresa, Rebecca
- If you want to do an infomercial for poster/Demo, and if you haven't already signed up, Pl see John or Jennifer before lunch.
- Pl sign up which breakout sessions you would like to participate in



## **Admin Notes - 2**



- Your Slides Send to John Martin by email COB Friday 6 April.
- \$\$ If you haven't paid the registration, pl do so.
- Buses
- TRIP to SPAWAR
  - Limited to 20



## **Experimentation/Demonstration**



- Develop Models and Predict Traces of networks 100s of nodes
  - End-End delays, Congestion, Instability
  - Evaluate Fluid and end-end models
- Demonstrate control in Lab networks
  - E.g., parameter tuning
- Demonstrate multi-scale characterization/visualization of network performance
  - 1K+ nodes
- Engage multiple ISPs for multi-operator experimentation
- Engage DOD agencies in joint experimentation



## **Experimentation/Demonstration**



- Develop Models and Predict Traces of networks 100s of nodes
  - End-End delays, Congestion, Instability
  - Evaluate Fluid and end-end models
- Demonstrate control in Lab networks
  - E.g., parameter tuning
- Demonstrate multi-scale characterization/visualization of network performance
  - 1K+ nodes
- Engage multiple ISPs for multi-operator experimentation
- Engage DOD agencies in joint experimentation



## **BACK UP**





## **On-line Network Control**







## **Impact and Significance**



- Lack of understanding has led to ad hoc methods and operator in the loop
- Improved Modeling and on-line ability will result in orders of magnitude improvement in time and cost for DoD
  - Parameter tuning to improve performance
  - planning, provisioning of capacity, topology to meet requirements
  - Failure detection and response
- Fast dynamic provisioning
  - One hour of a massive bio-attack.
- Hardening of COTS
  - Analyze protocols/ new technologies
  - Routing instabilities



#### A bad protocol is a virus







## **Program Tasks**



#### New Models of Traffic, Network, and Control

- Fluid Models: Physics of network traffic
- Empirically derived end-end models
- Scale, Model reduction, Control Models

#### Measurement, Model Validation

- Experimental Infrastructure
- Active, Passive sampling

#### On-line simulation

- Integrate models and event simulation
- Populated with on-line data
- Quick, Scalable, Parallel/Distributed

#### Emulation

Programmable interpreter

U Illinois
UC Berkeley
U Maryland
U Mass
Caltech/Princeton
Purdue/Kansas
Riverside, LANL

CNRI (15 Companies)
CAIDA, NIST
SAIC

RPI Renesys/ATT UCLA

Georgia Tech









Industry: CISCO, ATT, Iperf/XIWT (HP, Intel, Ameritech, SWBell, IBM, other members), CAIDA

**Government: NIST, DOE (SLAC, ONL, LANL)** 

**DOD Clients: DISA, JNMS, SPAWAR, RL** 

**Future: Other ISPs for multi-operator experiments** 







#### **Leverage Law of Large Numbers**

- 100s packets is a drop
- Diffusion approximation

Differential Equation driven by stochastic inputs

**Capture Long Range Dependence** 

Fluid Models of Service/Network

• Generalized Processor Sharing

**Theory:** 

UMASS, Berkeley, UIUC, Caltech

**Implementation:** 

**UCLA, LANL/NIST** 

Simulate/Analyze:

**Delay, Loss Rates Congestion, Instabilities** 

**Turbulence?** 



Fluid level -> no. of packets Overflow -> loss rate



#### Fluid Network/Service Model



Tap driven by traffic model

Switch/router

Buffer

<u>Actual</u> <u>Model</u>

Buffer size N packets (discrete) Container of N fluid units (continuous)

Link average speed B packet/sec Emptying rate B units/sec

Buffer overflow rate Container overflow rate

Different traffic types Non-colloidal fluid

Congestion (> x packets) Container level (> x)

Propagation delay z Pipe of length z; normalized diameter

Average delay at link Reciprocal of flow rate

Thruput Flow rate

Switch/Router Disaggregation

**Priority** 

Routing

Generalized Processor Sharing

#### Model Capability:

Picking up events every 100 packets or so

Good enough for congestion, average delay

Lost: packet level details

**Generalized Processor Sharing: (Gallagher/Parekh)** 

**Instantaneous Emptying/Routing rate = Function (Priority, policy, routing, buffer contents...)** 







- Direct On-Line fitting of models to path, end-end data.
  - Delay, Error Rates
  - Adaptive model fitting
  - Measured from Edges
  - Inferring link data from edge measurements (tomography)
- Multi-Scale
  - Exploit multi-fractal, selfsimilarity in data
  - Variety of observed network data exhibits fractal nature
    - » Delays, web traffic, interarrival times of packets
    - » Aggregate Traffic
    - » Network size (edges, links)
  - Density falls as power law
  - HOT: Highly optimized
     Tolerance Theory

Renesys, UMD, Rice/Princeton Caltech/UCLA, Kansas And Measurement Team





## **Multiscale Nature of Traffic**



- Multifractal (Riedi et al '97)
  - -small time scales
  - -network, protocol layer
  - -control at connection level

- LRD (Willinger'93, Varaiya '96 and others)
  - large time scales
  - client behavior
  - bandwidth over buffer



Self Similar subclass of MF a subclass of LRD







- Study a random process in terms of how its moments scale as we zoom in/out (multiscale)
- Classical approach:

2nd order moment (variance) scaling

• Ideal, *fractal* scaling with Hurst parameter H x(at) "looks like"  $a^H x(t)$ 

zoomed

in the sense that

$$var[x(at)] = var[a^H x(t)]$$

Example: fractional Brownian motion (fBm)

Special case: Self similarity







- Fractal analysis limited to 2nd order statistics
   natural for Gaussian processes only
- Multifractal analysis: study scaling of higher and lower order moments:

$$x(at)$$
 "looks like"  $a^{H(k)} x(t)$ 

in the sense of k-th moments

$$mom_k[x(at)] = mom_k[a^{H(k)} x(t)]$$

 Natural for many nonGaussian processes, particularly bursty network traffic







•Multifractal model: Estimation, fitting theory known.



Time scale

Data: Round Trip delay between two specific nodes.





## **Scaling: Empirical Observations**

# UC Riverside CAIDA



Internet instance, 95-98
From CAIDA

Degree of node = Number of Edges



Power-law: Frequency of degree vs. degree for Autonomous systems

- Empirical Observation: Frequency of degree (d) =  $d^{**}(-a)$
- Remained so even with network growth.
- Questions:
  - What is the implication on performance as network scales?
  - What is the performance scaling relationship between an 1K node network and a 100K node network given both have the same power law?





## **Control Models**

#### UC Irvine, UI Urbana, Berkeley

- Parameter Tuning (TCP, Web)
- DIFFSERV

Measurement Based

- -COS Provisioning
- MPLS
  - -Adaptive resource allocation
- Pricing Models

FM with new window adjustment for differentiated services in TCP

W - window size

$$egin{array}{lcl} rac{d}{dt} w_{i}(t) &=& -\kappa rac{d_{i}}{ar{d}_{i}} rac{s_{i}}{w_{i}}, & { ext{A-Incidence matrix}} \ ar{d}_{i} - \operatorname{prop delays} \ ar{d}_{i} &=& d_{i} + A_{i}.q \end{array} \ s_{i} &=& w_{i} - x_{i}d_{i} - p_{i} ext{ for } i = 1, \cdots, N. \end{array}$$

#### **Example: QoS Provisioning. Distributed TCP Control**



FM vs. NS

| $\mathrm{target}(p_i)$ | throughput | throughput ratio | target ratio |
|------------------------|------------|------------------|--------------|
| 2                      | 420        | 1                | 1 FTP        |
| 6                      | 1117       | 2.66             | 3            |
| 10                     | 1863       | 4.43             | 5            |
| 14                     | 2628       | 6.26             | 7            |
| 18                     | 3353       | 7.98             | 9 Video      |



## Measurement/Experiment Infrastructure



#### •IPEX:

#### "Internet Performance Exchange" XIWT/CNRI

- Industry Lead, Readily Configurable, Accessible Internet Testbed for Performance Measurement, Experimentation and Data Generation
- Mesh Measurement.
- Generate baseline data series for testing concepts of normal and anomalous performance
- "Plug and play" environment for researchers' use: ready access, available analysis & measurement tool library, data collection/security services
- CAIDA
- ATT/CISCO
- DISA (Netwars)
- JNMS
- SPAWAR, JTRS

# Adaptive Hierarchical Modeling Incorporating On-Line Measurements







## **Distributed On-line Simulation**



Network Decomposed Into Domains.

Each Domain Simulated Separately, Simultaneously Using On-Line Simulator.

Watchdog Collects Traffic Outflow For Each Domain Over time intervals.

Model

Convergence Time Step



**Model Generator Produces Traffic Inflow From Other Domains.** 

RPI, Renesys/ATT, UCLA



## **Fault Analysis**





- What if the red link becomes overloaded?
  - Today: discover the symptom (high loss)
- USC/SAMAN will help identify the cause:
  - Change in C2 traffic mix?
  - Interactions between C1 and C2 traffic?
- Use of M&S to:
  - -Predicting and avoiding failures
  - -Cascading failures
  - -Planning failure recovery strategies
- •SAMAN Simulation augmented by measurement and analysis.



## Information Assurance



- Improved OE (operational effectiveness) of communication networks.
  - Improved ability to detect network problems.
  - Improved ability to respond to detected network problems.





# Collaborate with FTN and DCN Programs ITO



#### **Emulation**



#### Georgia Tech

#### Larger scale, more detailed models of emulated network

Solution: Parallel & distributed real-time execution of discrete event models

# Need plug-n-play methodology for heterogeneous emulation tools

Solution: Emulation backplane approach

TCP Network Models e.g. Real Code

Wireless Network Models e.g. PARSEC ATM Network Models e.g. Opnet

#### **Need repeatable execution capability**

—for improved debugging and testing support

Solution: *Direct execution* of end-user applications, and discrete event simulation of network-node models